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Abstract: Most trypanosomatid flagellates do not have catalase. In the evolution of this group, the
gene encoding catalase has been independently acquired at least three times from three different
bacterial groups. Here, we demonstrate that the catalase of Vickermania was obtained by horizontal
gene transfer from Gammaproteobacteria, extending the list of known bacterial sources of this gene.
Comparative biochemical analyses revealed that the enzymes of V. ingenoplastis, Leptomonas pyrrhocoris,
and Blastocrithidia sp., representing the three independent catalase-bearing trypanosomatid lineages,
have similar properties, except for the unique cyanide resistance in the catalase of the latter species.

Keywords: Vickermania ingenoplastis; Leptomonas pyrrhocoris; Blastocrithidia sp.; cyanide resistance

1. Introduction

Catalase (EC 1.11.1.6) is one of the most widespread enzymes in aerobic organisms [1].
Most of the typical catalases are homo-tetramers with four prosthetic heme b groups and,
in some cases, another cofactor—NADPH [2]. This enzyme catalyzes the decomposition of
hydrogen peroxide, which is produced during aerobic metabolism, into oxygen and water
in a two-step process. In the first step, a ferric cation reacts with the first molecule of H2O2
producing compound I (oxidized form, oxoferryl π-cation radical) and water. In the second
step, this compound reacts with the second H2O2 molecule, resulting in two single-electron
reductions in the enzyme, followed by the production of oxygen and the second molecule
of water [3,4]. The kinetics of this reaction depends on the distal side residues [5]. The main
function of catalase is to protect cells from hydrogen peroxide, which belongs to reactive
oxygen species. Although hydrogen peroxide has high activation energy and, therefore,
can react only with a narrow range of biological molecules [6], in the presence of Fe2+ it
can enter the Fenton reaction, where the final product is one of the strongest oxidants—the
hydroxyl radical [7]. Catalases were studied for over 100 years [8] and experimentally
determined structures of several representative enzymes (for example, those from bovine
liver [9], Penicillium vitale [10], and Saccharomyces cerevisiae [11]) were published.

Phylogenetic reconstruction of the catalase evolutionary history is complicated by
frequent horizontal gene transfer (HGT) events, which are especially frequent among
prokaryotes [12]. The same mechanism is responsible for the presence of catalases in
eukaryotes, which have acquired the corresponding genes from different sources [13,14].
The HGT is a movement of genetic material between two unrelated species in proximity,
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in contrast to the vertical gene transfer, where the genetic material is passed from the
parent to the offspring [15,16]. The HGT drives speciation in bacteria and archaea and
may easily convert a harmless species into a severe pathogen [17–19]. Eukaryotes most
frequently have HGTs from their endosymbiotic bacteria [20,21] and viruses [22]. There are
several conceptual approaches to infer HGT events in genomes [23]. One method relies on
comparing genomes of closely related species or strains of the same species: the differences
in gene content can indicate recent HGTs. Another approach rests on the analyses of
genomic GC content and codon usage: again, the differences imply possible HGTs. Both
methods are likely to underestimate the HGT events and they are not suitable to detect gene
transfer between species with a similar composition of their genomes or ancient events
(once integrated, the DNA progressively acquires the traits of the receiving genome). The
phylogenetic approach for deducing HGTs is the most powerful of all. It is based on a
comparison of the gene and organism phylogenies, and a significant discordance between
them is considered conclusive evidence of HGT (reviewed in [23]).

Most eukaryotes have catalases acquired from various sources, but several groups,
for instance, organisms thriving in anoxic conditions, such as Giardia, Trichomonas, Enta-
moeba, or Cryptosporidium spp., or those containing secondary plastids, such as euglenids
or chlorarachniophytes) conspicuously lack any identifiable homolog of this gene in their
genomes [14,24]. Kinetoplastid flagellates of the family Trypanosomatidae represent a case,
where the distribution of catalases among lineages is mosaic [25]. The members of this
family parasitize either only insects (monoxenous species) or use invertebrate vectors to
shuttle between vertebrate or plant hosts (dixenous species) [26–28]. In this group, the
catalase-encoding genes were found only in monoxenous Leishmaniinae (phylogenetic
relatives of dixenous Leishmania—representatives of the genera Crithidia, Leptomonas, Lot-
maria and Novymonas), Blastocrithidiinae (genera Blastocrithidia and Obscuromonas) and
Vickermania spp. Importantly, catalases in these groups have been independently acquired
via HGT from bacteria of different classes: Spirochaetia (Leishmaniinae) [14] and Betapro-
teobacteria (Blastocrithidiinae) [29], while the origin of catalase in Vickermania has not been
investigated [30]. Interestingly, the catalase-encoding gene is absent from all the analyzed
genomes of Leishmania spp. and their closest phylogenetic relatives—dixenous Porcisia
and Endotrypanum [31], indicating that its secondary loss was apparently driven by the
incompatibility of the enzyme with the dixenous life cycle of these parasites. This view was
further supported by experiments with Leishmania mexicana, Trypanosoma cruzi and T. brucei
genetically modified to express catalase [32–34]. In all these cases parasite development
and pathogenicity were severely impaired.

In this work, we demonstrate that the catalase of Vickermania spp. was acquired by
HGT from Gammaproteobacteria, i.e., independently from those of Leishmaniinae and Blas-
tocrithidiinae, and provide comparative biochemical analysis of different trypanosomatid
catalases of Leptomonas pyrrhocoris, Blastocrithidia sp., and Vickermania ingenoplastis.

2. Materials and Methods
2.1. Trypanosomatid Isolates and Cultivation

Blastocrithidia sp. (isolate P57), Leptomonas pyrrhocoris (isolate H10), and Vickermania
ingenoplastis (isolate CP021) were cultivated as described previously [35–37]. Total DNA
was isolated with the GeneJET Genomic DNA Purification Kit (Thermo Fisher Scientific,
Waltham, USA) following the manufacturer’s protocol. The species identity was confirmed
by SSU rRNA gene sequencing as in [38].

2.2. Phylogenetic Inferences

The protein sequence of Vickermania ingenoplastis catalase (See Data Availability sec-
tion) was used as a query for a blastp search in the NCBI nr database [39]. The search
resulted in over 70,000 sequences, which were then filtered as follows: e-value reported
as 0, the hits do not contain “multispecies”, “unknown”, “partial”, “uncultured”, and
“unclassified” in their identifiers, and only the first instance taken in the case of duplicates
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(identical sequences). The final dataset contained 11,997 sequences, including that of V.
ingenoplastis. The sequences were aligned using MAFFT v. 7.471 [40] in automatic mode
and the poorly aligned regions were removed using seqmagick v. 0.8.4 [41] with convert
–squeeze-threshold of 0.5. The phylogenetic tree was built using FastTree v. 2.1.10 under
LG + CAT model [42]. A subset of 20 sequences, representing the clade enclosing the se-
quence of V. ingenoplastis on the large tree, was selected for the phylogenetic reconstructions
under the maximum likelihood criterion in IQ-Tree v. 2.1.3 [43] and by the Bayesian method
in MrBayes v. 3.2.7 [44]. For the ML inference, the LG + I + G4 model was selected as
the best fit by ModelFinder (implemented in IQ-TREE) based on a BIC score [45], and
1000 standard bootstrap replicates were used for the estimation of branch support. In
MrBayes, we used the LG model, 400,000 generations, and all other parameters set by
default. The standard deviation of split frequencies at the end of the run was below 0.01.

2.3. Analysis of Gene Copy Number

The catalase gene copy number was analyzed in eight trypanosomatid species with
high-quality genomes available [46]: Blastocrithidia sp., Crithidia bombi, C. expoeki, C. fascicu-
lata, Leptomonas pyrrhocoris, L. seymouri, Novymonas esmeraldas, and Vickermania ingenoplastis
(Table S1). We reasoned that using lower-quality draft genomic data is not justified as it
may produce artifacts, because of the substantial number of unassembled contigs. The
searches were executed using tblastn and blastp with an e-value cut-off of 10−10, using
the catalase of L. pyrrhocoris as a query. The catalase clade assignment was done using the
NCBI-CDD search tool [47,48]. The protein sequences were aligned using MAFFT v. 7.471
with the L-INS-i iterative refinement method and the average protein identity within the
alignment was assessed using the esl-alistat script v. 0.46 from the HMMER package [49].
A pairwise identity matrix was calculated using Clustal Omega v. 2.1 [50] and visualized
using DisplayR v. 1.0.1 [51].

2.4. Sequence Analysis of Catalase

The protein sequences of Homo sapiens (NP_001743), L. pyrrhocoris (XP_015656183),
and Blastocrithidia sp. (QDL90315) catalases were downloaded from NCBI and aligned with
that of V. ingenoplastis by MAFFT v. 7.471 using the G-INS-i iterative refinement method.
The presence of conserved domains was analyzed with the NCBI-CDD tool.

2.5. Expression and Purification of Recombinant Catalases

The L. pyrrhocoris and V. ingenoplastis catalase ORFs were amplified from genomic
DNA using specific primers containing NdeI and NotI restriction sites (Table S2). Because
Blastocrithidia sp. genomic sequence contains in-frame stop codons [52], it was modified
to preserve the translated amino acid identity (Figure S1) and synthesized by Eurofins
Genomics (Luxembourg). DNA fragments were cloned into the pET42b+ expression
vector (MilliporeSigma, Burlington, NJ, USA) following NdeI and NotI digestion. The
resultant plasmids were transformed into the ArcticExpress (DE3) RIL Escherichia coli
(Agilent Technologies, Santa Clara, CA, USA).

Proteins were expressed and purified on Ni Sepharose 6 Fast Flow resin (GE Health-
care, Chicago, IL, USA) per the manufacturer’ instructions. After elution with 150–300 mM
imidazole, the samples were dialyzed overnight at 4 ◦C against 50 mM potassium phos-
phate buffer pH 7.0. The purified protein was either used directly for enzymatic assays or
preserved in 20% (v/v) glycerol at −80 ◦C.

2.6. Catalase In-gel Activity Staining

Purified proteins (10 µg) and bovine liver catalase (5 µg, MilliporeSigma), used as a
standard, were separated in 6% polyacrylamide gel, pH 8.8 under non-denaturing con-
ditions at 4 ◦C. After separation, the gel was washed thrice with ultrapure water and
incubated with 0.3% hydrogen peroxide for 10 min at room temperature. The staining
components (2% FeCl3 and 2% K3[Fe(CN)6], both w/v) were prepared freshly and filtered
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through a 0.22 µm filter before use. They were added to the gel and the presence of an
achromatic band indicated the catalase activity [53].

2.7. Catalase Activity Assays

The activity of catalase was measured spectrophotometrically using DU-730 UV–Vis
spectrophotometer (Beckman Coulter, Brea, CA, USA) at 240 nm. The reactions (1 mL)
comprised 50 mM potassium phosphate buffer pH 7.0, ~300 ng (1 nM) enzyme and various
concentrations of a substrate (from 0.5 to 75 mM). The concentration of decomposed
hydrogen peroxide was determined using ε240 of 43.6 M−1cm−1 [54]. One unit (U) of
activity was defined as the amount of the enzyme that reduces 1 µmol of hydrogen peroxide
per 1 min. All measurements were performed in triplicates. The enzymatic properties were
calculated using non-linear regression analysis [55] in Prism v9.2.0 (GraphPad Software,
San Diego, CA, USA). In short, the enzyme velocity (µmoles/min) at a given concentration
was calculated from 15 measurements and used to deduce KM and VMAX values and
standard deviation. The observed values were calculated from the Michaelis–Menten plots
of velocity over concentration: three independent biological replicates were averaged and
used for calculating the observed KM and VMAX values [56].

The pH optimum of catalases was measured with 15 mM H2O2 and buffers with
different pH—sodium citrate (pH 5), potassium phosphate (pH 6–8), Tris-HCl (pH 9),
and Glycine-NaOH (pH 10–11). The ionic strength of all buffers was kept at 50 mM. All
measurements were performed in triplicate.

The enzymatic inhibition was measured with 15 mM H2O2 and 50 mM potassium
phosphate, pH 7. The enzyme was incubated with different concentrations of inhibitors
(KCN or 3-amino-1,2,4-triazole, hereafter denoted as 3-AT, both from MilliporeSigma) for
one minute, then the substrate was added and the residual activity was measured at 240 nm
for 2 min [56]. All measurements were performed in triplicate.

2.8. Protein Structure Prediction

The structures of the three catalases under study were predicted by the ColabFold
implementation of AlphaFold 2 [57,58] with AlphaFold parameters from 2021-07-14, not
using Amber relaxation or PDB templates. The source sequences databases used were
UniREF, BDF, Uniclust, MGNify, supplemented with an additional database specifically
gathered for Kinetoplastid species, as previously described [59]. The structures were
visualized in PyMOL v. 2.3.0 [60]. The heme group was added to the catalase structures
of V. ingenoplastis, L. pyrrhocoris, and Blastocrithidia sp. by superimposition on those of
their closest relatives identified by BLAST (Acinetobacter sp. (PDB: 6PT7), Vibrio salmonicida
(PDB: 2ISA), and Pseudomonas aeruginosa (PDB: 4E37), respectively) using the ‘cealign’
function in PyMOL. The RMSD values were calculated in PyMOL.

3. Results
3.1. Phylogenetic Inferences, Analyses of Sequences and Gene Copy Number

The phylogenetic analysis of the catalase-encoding gene showed a remarkable di-
vergence of this enzyme within the family Trypanosomatidae (Figure 1A). In agreement
with previous studies, the catalases of Leishmaniinae and Blastocrithidiinae clustered with
those of spirochetes and betaproteobacteria, respectively [29]. The catalase of Vickermania
ingenoplastis was revealed to be most closely related to that of Acinetobacter spp. of the
family Moraxellaceae belonging to the order Moraxellales of the class Gammaproteobac-
teria (Figure 1B). The statistical support of this relationship is absolute by both methods
used, even though, in general, the resolution of the tree is rather low. Another represen-
tative of the family Moraxellaceae (Alkanindiges) is the next closest relative. This places
Gammaproteobacteria as a new source of this enzyme for trypanosomatids.
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Figure 1. Origin of catalases in trypanosomatids. (A) Phylogenetic tree showing the position of
trypanosomatid enzymes. (B) Phylogenetic tree of the closest relatives of the catalase in V. ingenoplastis.
Numbers indicate Bayesian posterior probability and bootstrap supports, respectively. Bacterial
taxonomy (classes for all, order, and family for the closest relatives of V. ingenoplastis) is on the right.
Scale bars in (A,B) indicate the number of substitutions per site.
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Of note, among bacteria, catalases are often acquired by HGT and one species of
bacteria may even contain enzymes of different origin [61]. The tree in Figure 1B contains
19 closest relatives of V. ingenoplastis catalase, of which only eight belong to Gammapro-
teobacteria, despite the fact that the dataset used here contained 4419 catalase sequences
from this bacterial class.

Using the NCBI-CDD search tool we predicted conservative domains of the three
trypanosomatid catalases (Blastocrithidia sp. P57, Leptomonas pyrrhocoris, and Vickermania
ingenoplastis). The newest “kid on the block”, a catalase of V. ingenoplastis, like the other
trypanosomatid catalases, belongs to the clade 3 (IPR040333), the most abundant subfamily
found in all the kingdoms [1]. These enzymes are relatively small varying in size between
43 to 75 kDa, bind the protoheme IX (heme b), require NADPH as a second redox-active
cofactor, and form tetramers.

The catalase sequences in general and those of trypanosomatids are fairly well con-
served (Figure 2). Amino acid residues forming the heme binding pocket are invariant
(marked by black asterisks). The most variable is the sites responsible for oligomer for-
mation (boxed in green). The His75 (hereafter, the amino acid numbering refers to the
human catalase, shown on top in Figure 2, unless specified otherwise), which has been
shown to covalently bind 3-AT [62], is conserved in trypanosomatid enzymes (boxed in
pink). Strikingly, the Val116, which is invariably conserved in all previously investigated
catalases and appearing to be crucial for the enzyme [2], in Blastocrithidia sp. p57 has been
substituted with Ala (Val99Ala).
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Figure 2. Multiple alignment of catalase amino acid sequences for three trypanosomatids and well-
studied Homo sapiens (selected as a reference). Predicted domains and sites: black asterisk, heme
binding pocket; blue box, NADPH binding site; green box, tetramer interface; orange box, N-terminal
threading arm; pink box, distal histidine binding site for 3-AT inhibitor; red box, peroxisomal
targeting signal. The Val116 is boxed in black. Conservation color below alignment follows the
ClustalX scheme. The numerical index indicates the level of conservation for each column of the
alignment. The score is shown below the histogram, with higher score denoting higher level of
conservation. The conserved positions with a score of 11 are indicated by yellow asterisks. Positions
with a score of 10 (possessing mutations but retaining all physicochemical properties) are marked
by ‘+’.
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We noticed that, while being present as a single copy in genomes of Blastocrithidia sp.,
C. bombi, L. pyrrhocoris, L. seymouri, and V. ingenoplastis, the catalase-encoding gene has
been multiplicated in the genomes of at least two Crithidia spp.–C. expoeki and C. fasciculata
containing 3 and 4 nearly-identical paralogs, respectively (gene IDs C_expoeki_000029100,
C_expoeki_000005110, C_expoeki_160005000 and CFAC1_250006200, CFAC1_160031400,
CFAC1_280006600, CFAC1_290005500 respectively) (Figure 3, Table S3). In trypanoso-
matids, the amplification of a gene is a known mechanism of increasing its expression [63,64].
The reason why these particular species may require higher catalase expression levels re-
mains to be investigated further.
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Figure 3. Heatmap for the pairwise sequence identity percentage at the amino acid level between
13 catalase sequences. The color brightness reflects the identity percentage. A dendrogram on top
visualizes the result of hierarchical clustering calculations. Full species names and sequence IDs are
listed in Table S1. The source data for this diagram are in Table S3.

3.2. Biochemical Characterization of Trypanosomatid Catalases

The C-terminally His-tagged catalases of Blastocrithidia sp. P57, Leptomonas pyrrhocoris
H10, and Vickermania ingenoplastis CP21 were expressed in E. coli BL21(DE3)pLysS at
different temperatures in the range between 16 and 37 ◦C. In all these cases, the majority of
the recombinant protein was found in the inclusion bodies, implying a mismatch between
the rate of protein synthesis and the capacity of cells to fold them into their native state [65].
Therefore, we switched to the ArcticExpress (DE3) RIL E. coli and expression at 10 ◦C. In
these conditions, the amount of soluble protein was substantially higher than in other E.
coli strains tested previously. The calculated size of the His-tagged catalase monomer is
55.4 kDa, 54.9 kDa, and 56.4 kDa for L. pyrrhocoris, V. ingenoplastis, and Blastocrithidia sp.,
respectively. These numbers correlated well with the protein sizes observed on the SDS-
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PAGE (Figure 4, bottom panel). The enzymatic activity of purified catalases was confirmed
by in-gel activity staining using bovine liver catalase as a control (Figure 4, upper panel). We
noticed that catalases of the analyzed trypanosomatid species run differently on the native
gel, implying differences in the composition or stability of their multimeric complexes.
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plastis CP21 (Ving), and Leptomonas pyrrhocoris H10 (Lpyr). The bovine liver catalase (homo-tetramer
of approximately 240 kDa, lane 4) served as a control. Ten and five micrograms were assayed for
trypanosomatids’ and bovine enzymes, respectively. The loading control (SDS-PAGE) is shown below.

Next, we investigated the kinetic properties of the three trypanosomatid enzymes.
Generally speaking, catalases do not follow the classical Michaelis–Menten kinetics over
the whole range of substrate concentration: (i) substrate inhibition is observed at high
concentrations of H2O2; (ii) the reaction has two enzymatic steps [3]. However, at low
hydrogen peroxide concentrations, the Michaelis–Menten kinetics can be approximated and
KM and VMAX values calculated. For measuring the kinetic parameters of purified catalases,
we employed a continuous assay that directly monitors the decrease of hydrogen peroxide
concentration over time at 240 nm. Due to the formation of bubbles that could interfere with
spectrophotometric measurements, we kept the total amount of catalase in the reaction at
approximately 300 ng (~1.33 nM). The kinetics data (observed and calculated by non-linear
regression analysis KM and VMAX) are presented in Table 1. The KM for L. pyrrhocoris and V.
ingenoplastis catalase are similar (9.40 ± 1.39 mM and 8.14 ± 0.90 mM), while this value for
the Blastocrithidia sp. catalase is higher (22.8 ± 2.5 mM). The observed trend for VMAX is the
same. As was described before, the catalases exhibit substrate inactivation [56]. The catalase
of L. pyrrhocoris H10 started to be inactivated when the concentration of substrate reached
35 mM. For other catalases, the concentration of their substrate needed for inactivation was
45 mM and 50 mM for V. ingenoplastis and Blastocrithidia sp., respectively (Figure S2).

Table 1. Observed and calculated by non-linear regression analysis VMAX and KM values of try-
panosomatid catalases expressed (in µM/min and mM, respectively).

Catalase VMAX Calculated VMAX Observed KM Calculated KM Observed

L. pyrrhocoris 3077 ± 97 3448 9.40 ± 1.39 13.95
V. ingenoplastis 3890 ± 316 3922 8.14 ± 0.9 9.96

Blastocrithidia sp. 4543 ± 158 4036 22.80 ± 2.5 24.63
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We also tested two compounds that are known to inhibit the catalase activity: (1) a
reversible competitive inhibitor KCN acting as a sixth ligand of the iron in the heme pros-
thetic group and featuring linear binding [66], and irreversible 3-AT forming covalent
non-coplanar adduct by reacting with a distal histidine of catalase [62]. For all the inves-
tigated enzymes we measured the inhibitor concentration necessary to half the specific
activity, IC50 (Table 2).

Table 2. KCN and 3-AT IC50 values for trypanosomatid catalases (in µM and mM, respectively).

Catalase KCN 3-AT

L. pyrrhocoris 51.5 10.40
V. ingenoplastis 4.34 11.43

Blastocrithidia sp. >1200 15.59

All catalases reacted similarly to the presence of 3-AT with IC50 ranging between
10 and 16 mM. However, the KCN sensitivity varied greatly from 4.34 µM in the case
of the most sensitive enzyme from V. ingenoplastis to over 1200 µM for the catalase of
Blastocrithidia sp. (Figure S3).

To further characterize the purified enzymes, we tested their pH optima. The activity
of catalases was assayed at a pH ranging from 5 to 11. The enzymes were not active at
low pH. The pH optimum for L. pyrrhocoris catalase was around 7, while at higher pH its
specific activity decreased. The graphs for V. ingenoplastis and Blastocrithidia sp. catalases
had two peaks at ~pH 7 and 9, and pH 6 and 11, respectively (Figure S4).

3.3. Structural Insight into Trypanosomatid Catalases

Prompted by the observation that the catalase of Blastocrithidia sp. is resistant to
cyanide, we investigated this further by comparing predicted structures of the three try-
panosomatid catalases (Figure 5). Predictions were made using AlphaFold 2 with high
confidence (pLDDT and pAE almost entirely over 90 and below 5 Å, respectively, Figure S5).
The inferred structures showed high overall similarity (Figure 5, left panel) and even higher
similarity for the catalytic center (Figure 5, right panel). Furthermore, we calculated root-
mean-square deviation of atomic positions (RMSD) values and compared them between the
three trypanosomatid catalases and their closest PDB relatives (6PT7, 2ISA, 4E37) (Table S4).
All the estimated values were in the same range, further supporting a note of the high
similarity between these enzymes.

To the best of our knowledge, all previously studied monofunctional catalases are
cyanide-sensitive [56], making the enzyme of Blastocrithidia sp. truly unique. As mentioned
above, the cyanide acts as a competitive inhibitor in binding as a sixth ligand of the iron
in the heme prosthetic group. This process takes place in the heme binding pocket. Both
the substrate and the inhibitor must gain access to the deeply buried active site of the
catalase. The main channel approaches the heme pocket in perpendicular orientation to
the plane of heme [67]. The first part of the channel in small-subunit catalases is funnel-
shaped, making it accessible to bigger molecules. The second part of the channel contains
well-conserved amino acid residues that restrict the passage of bigger molecules with van
der Waals diameter over 3.5 Å [56,68]. Previous studies revealed that the main channel is
also important for the proper orientation of the substrate [69,70]. Direct comparison of the
predicted structures for Leptomonas pyrrhocoris, Vickermania ingenoplastis, and Blastocrithidia
sp. catalases revealed overall structure conservation (Figure 5, left column), confirming
previous sequence analysis (Figure 2). Nevertheless, we detected changes in the amino
acids forming the main channel (Figure 5). The most striking one was the mutation of the
highly conserved Val99 into Ala in the enzyme of Blastocrithidia sp. Notably, this mutation
is preserved in another previously analyzed species of Blastocrithidia, B. triatomae [29]. In
S. cerevisiae, the Val116Ala substitution caused the increase in peroxidatic activity of the
catalase-A [11]. A similar change in the hydroperoxidase II of E. coli caused a decrease
in its enzymatic activity [71]. It has been proposed that dimensions of the channel might
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present important determinants of the rate for H2O2 or inhibitors’ movement into the
active site [72]. To investigate this, we measured the constriction of the main channel
(narrowest poInt. between Phe136 and Ala99, Phe142 and Val105, Phe133 and Val96 for
Blastocrithidia sp., L. pyrrhocoris, and V. ingenoplastis, respectively). This value was the
highest for Blastocrithidia sp. (Figure 5, right column), indicating that Val to Ala substitution
results in the main channel enlargement, potentially making it more accessible to water.
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Figure 5. Predicted three-dimensional structures of the monomers of trypanosomatid catalases.
Left column: overall structure; right column: heme pocket and the innermost part of the channel.
Superimposed heme group is in orange with N and O atoms colored in blue and pink, respectively.
Green and red indicate proximal and distal heme sides, respectively. Blue, heme propionate side
chains; magenta, heme vinyl side chains; residues shown in red and yellow are His and Asn of the
distal side and Ala/Val and Phe of the main channel, respectively. The PAE (predicted average error)
plots for the modeled structures are presented in Supplementary Figure S5.
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4. Discussion

In this work, we focused on catalases of trypanosomatids and demonstrated that in all
cases known thus far, these enzymes have been independently acquired by Leishmaniinae,
Blastocrithidiinae, and Vickermania via HGT from bacteria of the classes Spirochaetia,
Betaproteobacteria, and Gammaproteobacteria (Figure 1). The putative HGT scenarios for
Leishmaniinae and Blastocrithidiinae have been discussed in earlier works [14,29] and are
linked to the midgut dwelling, which is typical for many members of the former and all of
the latter subfamily [73]. The same logic applies to the Gammaproteobacteria of the family
Moraxellaceae acquired by Vickermania. The putative HGT must have occurred in the fly
midgut that can be coinhabited by both organisms [36,74]. The more intriguing question
is why the catalase was acquired only by some trypanosomatids, while the vast majority
“live happily” without it? Insects use H2O2 to control their gut microflora and bacteria
survival depends on the presence of catalase [75,76]. However, most trypanosomatids
rely on glutathione peroxidases and peroxiredoxins, and even the flagellates that acquired
catalase still preserve these enzymes [77], making the whole story especially mysterious.

Usually, catalases are tetrameric [1], but other modes of complex organization, for
example, enzymatically active oligomers, have been also documented [78,79]. Our data
suggest that the recombinant catalases of Leptomonas pyrrhocoris and Vickermania ingeno-
plastis are not tetrameric. However, it cannot be excluded that tetramerization in these
two species requires posttranslational modifications, which could not be achieved when
expressing enzymes in E. coli.

Two out of three investigated trypanosomatid catalases showed cyanide sensitivity
(IC50 of 4.3 and 51.5 µM for V. ingenoplastis and L. pyrrhocoris, respectively) comparable
to that of other previously tested enzymes (9–300 µM) [56]. However, the catalase of
Blastocrithidia sp. was not sensitive to any concentration applied, making this enzyme truly
unique. To date, this property has been associated only with some manganese-dependent
enzymes, known as pseudocatalases [80]. The lack of sensitivity to cyanide inhibition
in the case of Blastocrithidia enzyme may be a result of steric effects, the ability of distal
channel residues to stabilize the formation of hydrogen bonds, electrostatic or van der
Waals interactions. Additional structural analyses by X-ray crystallography, NMR, Raman
spectroscopy, or cryoelectron microscopy could shed light on the differences between
catalases in Trypanosomatidae.

The analyzed catalases showed a broad pH optimum from pH 7 to 9. This range
is similar to that of other monofunctional catalases [81–83]. The activity significantly
decreased at low pH, which is explained by the heme dissociation [84].

The final poInt. we would like to comment on concerns KM and VMAX calculations.
The often-adopted approach relies on the use of Lineweaver–Burk double reciprocal plot to
estimate kinetic parameters of the enzymes [85]. The obtained results may substantially
differ from the experimental ones; for example, the calculated and observed KM values
for the Listeria seeligeri catalase were 111 and 49 mM, respectively [56]. Similarly, when
KM for L. pyrrhocoris catalase was calculated using this method, the obtained value of
105 mM did not correspond to the observed one of 14mM. Therefore, in this work, we
employed another approach (based on the non-linear regression analysis), which resulted
in comparable calculated and observed values (Table 1).

5. Conclusions

In conclusion, here we demonstrated that catalases of Trypanosomatidae have dif-
ferent origins (from spirochetes, beta- and gammaproteobacteria) and exhibit different
biochemical properties, despite the high similarity of their structures. The most striking
finding is the cyanide resistance of the Blastocrithidia sp. enzyme, which is unprecedented
for classical heme-dependent catalases.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox11010046/s1, Figure S1: DNA and conceptually translated sequence of Blastocrithidia sp.
catalase. The in-frame stop codons were converted into sense codons (highlighted in yellow) preserv-
ing the amino acid sequence (on top); Figure S2: Michaelis–Menten plots of catalase activity with
increasing substrate concentration. Data for L. pyrrhocoris, V. ingenoplastis, and Blastocrithidia sp. are
shown in panels (a), (b), and (c), respectively. The red dot indicates a measurement out of range;
Figure S3: Kinetic analysis of catalase activity in the presence of inhibitors; Figure S4: Kinetic analysis
of catalase activity at different pH; Figure S5: PAE plots for structures of catalases predicted in this
study; Table S1: Source of genomic data used for catalase copy number analysis; Table S2: Sequences
of primers used in this work; Table S3: Pairwise sequence identity values for 13 trypanosomatid cata-
lases; Table S4: RMSD values for the three trypanosomatid catalases and their closest PDB relatives.
Data are presented in angstroms.
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